Rigid body

In this section we describe the terms required to calculate the residual vector and iteration matrix in Algorithm 1 for simulation of the dynamics of a rigid body with six degrees of freedom. An Kynema rigid body has reference position and orientation given as

(5)\[\begin{split}\underline{q}^\mathrm{r} = \begin{bmatrix} \underline{x}^\mathrm{r} \\ \underline{\underline{R}}^\mathrm{r} \\ \end{bmatrix}\end{split}\]

where \(\underline{q}^\mathrm{r} \in \mathbb{R}^3\times \mathrm{SO(3)}\). The generalized degrees of freedom (displacement and rotation) are given by

\[\begin{split}\begin{aligned} \underline{q} = \begin{bmatrix} \underline{u} \\ \underline{\underline{R}} \\ \end{bmatrix} \end{aligned}\end{split}\]

where \(\underline{q} \in \mathbb{R}^3\times \mathrm{SO(3)}\), such that current position and orientation, in inertial coordinates, are given by

\[\begin{split}\begin{aligned} \underline{x}^\mathrm{c} = \underline{x}^\mathrm{r} + \underline{u}\\ \underline{\underline{R}}^\mathrm{c} = \underline{\underline{R}}\,\underline{\underline{R}}^\mathrm{r} \end{aligned}\end{split}\]

respectively. The rigid body is defined by a mass matrix defined in material coordinates, and is notated as \(\underline{\underline{M}}^* \in \mathbb{R}^{6\times 6}\), where the asterisk superscript denotes material-coordiate definition

The unconstrained governing equations can be written in residual form, following Eq. (2), as

(6)\[\underline{R} = \underline{\underline{M}}\, \dot{\underline{v}} +\underline{g} - \underline{f}\]

where \(\underline{R}, \underline{g}, \underline{f} \in\mathbb{R}^6\),

\[\begin{split}\underline{\underline{M}} = \begin{bmatrix} m \underline{\underline{I}} & m \tilde{\eta}^T \\ m \tilde{\eta} & \underline{\underline{\rho}} \end{bmatrix} = \underline{\underline{\mathcal{RR}^\mathrm{r}}}\, \underline{\underline{M}}^* {\underline{\underline{\mathcal{RR}^\mathrm{r}}}}^T \in \mathbb{R}^{6\times6}\end{split}\]

is the mass matrix in intertial coordinates, which defines \(m\), \(\underline{\eta}\in \mathbb{R}^3\), \(\underline{\underline{\rho}}\in\mathbb{R}^{3\times 3}\),

\[\begin{split}\underline{g} = \begin{bmatrix} m \tilde{\omega} \tilde{\omega} \underline{\eta} \\ \tilde{\omega} \underline{\underline{\rho}} \underline{\omega} \end{bmatrix}\end{split}\]

and where

\[\begin{split}\underline{\underline{\mathcal{RR}^\mathrm{r}}}= \begin{bmatrix} \underline{\underline{R}}~\underline{\underline{R}}^\mathrm{r}& \underline{\underline{\mathrm{r}}} \\ \underline{\underline{R}} & \underline{\underline{R}}~\underline{\underline{R}}^\mathrm{r} \end{bmatrix} \in \mathbb{R}^{6\times6}\end{split}\]

Variation of Eq. (6) can be written as

\[\begin{aligned} \delta \underline{R} = \underline{\underline{M}} \delta \underline{\dot{v}} + \underline{\underline{G}} \delta \underline{v} + \underline{\underline{K}} \delta \underline{q} \label{eq:rbvariation} \end{aligned}\]

where

\[\begin{split}\begin{aligned} \underline{\underline{G}} = \begin{bmatrix} \underline{\underline{r}} & \widetilde{ \widetilde{\omega} m \underline{\eta} }^T + \widetilde{\omega} m \widetilde{\eta}^T\\ \underline{\underline{\mathrm{r}}} & \widetilde{\omega} \underline{\underline{\rho}} - \widetilde{\underline{\underline{\rho}} \underline{\omega}} \end{bmatrix} \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} \underline{\underline{K}} = \begin{bmatrix} \underline{\underline{0}} & \left( \dot{\widetilde{\omega}} + \tilde{\omega}\tilde{\omega} \right) m \widetilde{\eta}^T\\ \underline{\underline{0}} & \ddot{\widetilde{u}} m \widetilde{\eta} + \left(\underline{\underline{\rho}}\dot{\widetilde{\omega}} -\widetilde{\underline{\underline{\rho}} \dot{\underline{\omega}}} \right) + \widetilde{\omega} \left( \underline{\underline{\rho}} \widetilde{\omega} - \widetilde{ \underline{\underline{\rho}}\underline{\omega}} \right) \end{bmatrix} \end{aligned}\end{split}\]

For a multibody system, the rigid-body residual is inserted into the appropriate rows of the global residual, Eq. (1), and matrices \(\underline{\underline{M}}\), \(\underline{\underline{G}}\), and \(\underline{\underline{K}}\) are assembled, via direct stiffness summation, into their global counterparts in the iteration matrix, Eq. (4).