Legendre spectral finite elements
The GEBT equations are discretized with Legendre spectral finite
elements (LSFEs), which are defined by \(P\) nodes and
\((P-1)\)th order Lagrangian-interpolant basis functions. Nodes
are located at the \(P\) Gauss-Legendre-Lobatto (GLL) points (in the
element reference domain), \(\xi_i\) for
\(i\in\{1,2, \ldots,P\}\), which are the solutions to the equation
\[\begin{aligned}
\left( 1-\xi^2\right) \frac{\partial L_{P-1}}{\partial \xi} = 0
\end{aligned}\]
for \(\xi \in[-1,1]\), where \(L_{P-1}(\xi)\) is the Legendre
polynomial of degree \((P-1)\) [@Deville-etal:2002]. The beam
reference line is approximated as
\[\begin{aligned}
\underline{x}^{0,h}(\xi) = \sum_{\ell=1}^{P} \phi_\ell(\xi) \underline{x}^0_\ell
\end{aligned}\]
where \(\phi_\ell(\xi)\) is the Lagrangian-interpolant of the
\(\ell^{th}\) node. For LSFEs, those can be written as
\[\begin{aligned}
\phi_\ell(\xi) = \frac{-1}{P (P-1)}
\frac{\left(1-\xi^2\right) \frac{\partial L_{P-1}}{\partial \xi}}{(\xi - \xi_\ell) L_{P-1}(\xi_\ell)}
\end{aligned}\]
for \(\xi \in [-1,1]\). The weak form of the residual of the
governing equations Eq. (9),
for the \(i^\mathrm{th}\)-node, can be written (after integration by
parts) as
(11)\[\underline{R}_i =
\int_{-1}^{1} \phi_i \underline{\mathcal{R}}\, J d\xi =
\int_{-1}^{1} \left[
\frac{\partial \phi_i}{\partial \xi}
\left(\underline{\mathcal{F}}^\mathrm{E1} +
\underline{\mathcal{F}}^\mathrm{D1} \right)J^{-1}
+ \phi_i \left(
\underline{\mathcal{F}}^\mathrm{I}
+ \underline{\mathcal{F}}^\mathrm{E2}
+ \underline{\mathcal{F}}^\mathrm{D2}
- \underline{\mathcal{F}}^\mathrm{ext}
\right)
\right]
J d\xi\]
\(\underline{R}\in\mathbb{R}^6\), for all
\(i\in\{1,\ldots,P\}\), where we have mapped the domain
\(s\in[0,L]\) to \(\xi \in[-1,1]\),
\(J(\xi) \in \mathbb{R}\) is the Jacobian of the mapping,
\[\begin{aligned}
J(\xi) = \sqrt{\frac{\partial \underline{x}^{0,h}}{\partial \xi}^T \frac{\partial \underline{x}^{0,h}}{\partial \xi} }
\end{aligned}\]
We remark that standard linear (i.e., 2-node) and quadratic (i.e.,
3-node) elements are a subset of LSFEs.
As described above, the generalized displacement, \(\underline{q}\)
is in \(\mathbb{R}^3 \times \mathrm{SO(3)}\). However, rotations are
represented as quaternions for storage and interpolation, and are stored
at nodes. In this form, nodal degrees of freedom are denoted, for the
\(i^\mathrm{th}\) node,
\[\begin{split}\begin{aligned}
\underline{q}_i = \begin{bmatrix}
\underline{u}_i \\
\hat{q}_i \\
\end{bmatrix}
\end{aligned}\end{split}\]
where \(\underline{u}_i \in \mathbb{R}^3\) and
\(\hat{q}_i \in \mathbb{R}^4\). The generalized displacement in
\(\mathbb{R}^3\times\mathrm{SO(3)}\) along the beam reference line
is then given as
\[\begin{split}\begin{aligned}
\underline{q}(s,t) = \begin{bmatrix} \underline{u}^h \\ \underline{\underline{R}} \left( \widehat{q}^h \right)
\end{bmatrix}
\end{aligned}\end{split}\]
where displacement is interpolated in the normal manner, i.e.,
\[\begin{aligned}
\underline{u}^h = \sum_{j=1}^{p} \phi_j\underline{u}_j
\end{aligned}\]
but quaternion interpolation requires normalization, i.e.,
\[\begin{aligned}
\widehat{q}^h = \frac{ \sum_{j=1}^{p} \phi_j \hat{q}_j }
{|| \sum_{j=1}^{p} \phi_j \hat{q}_j ||}
\end{aligned}\]
For a given quaternion, the associated rotation matrix is calculated as
\[\begin{aligned}
\underline{\underline{R}}\left(\hat{q}\right) = \underline{\underline{I}} + q \widetilde{q} + 2 \widetilde{q} \widetilde{q}
\end{aligned}\]
Introducing a quadrature scheme with \(n^Q\) points with locations
and weights, \(\xi_k^Q\), \(w_k^Q\),
\(k\in \{1, \ldots, n^Q\}\), respectively, the approximate form of
the residual, Eq. (11), can be
written
\[\begin{split}\begin{aligned}
\underline{R} = \begin{bmatrix}
\underline{F}^\mathrm{I}_1 + \underline{F}^\mathrm{E}_1
+ \underline{F}^\mathrm{D}_1
- \underline{F}^\mathrm{ext}_1 \\
\underline{F}^\mathrm{I}_2 + \underline{F}^\mathrm{E}_2
+ \underline{F}^\mathrm{D}_2
- \underline{F}^\mathrm{ext}_2 \\
\vdots \\
\underline{F}^\mathrm{I}_P + \underline{F}^\mathrm{E}_P
+ \underline{F}^\mathrm{D}_P
- \underline{F}^\mathrm{ext}_P
\end{bmatrix}
\end{aligned}\end{split}\]
where \(\underline{R} \in \mathbb{R}^{6 P}\) and
\[\begin{split}\begin{aligned}
\underline{F}_i^\mathrm{I} &=
\sum_{k=1}^{n^Q}
J(\xi^Q_k) \phi_i(\xi^Q_k) \underline{\mathcal{F}}^I(\xi^Q_k) w^Q_k\, \\
\underline{F}_i^\mathrm{E} &=
\sum_{k=1}^{n^Q}
\left[\phi_i^\prime(\xi^Q_k)
{\underline{\mathcal{F}}^{E1}}(\xi^Q_k)+ J(\xi^Q_k) \phi_i(\xi^Q_k)
\underline{\mathcal{F}}^\mathrm{E2}(\xi^Q_k) \right] w^Q_k\, \\
\underline{F}_i^\mathrm{D} &=
\sum_{k=1}^{n^Q}
\left[\phi_i^\prime(\xi^Q_k)
{\underline{\mathcal{F}}^{D1}}(\xi^Q_k)+ J(\xi^Q_k) \phi_i(\xi^Q_k)
\underline{\mathcal{F}}^\mathrm{D2}(\xi^Q_k) \right] w^Q_k\, \\
\underline{F}_i^\mathrm{ext} &=
\sum_{k=1}^{n^Q} \phi_i (\xi^Q_k)
\underline{F}^{ext}(\xi^Q_k) J(\xi^Q_k) w^Q_k
\end{aligned}\end{split}\]
and
\[\phi_i^\prime(\xi^Q_k) = \left .\frac{\partial \phi_i}{\partial \xi}\right|_{\xi=\xi^Q_k}\]
The matrices required for the time-integration iteration matrix in
Eq. (4) are constructed from the
following:
\[\begin{split}\begin{aligned}
\underline{\underline{M}}_{ij} =
\sum_{k=1}^{n^Q} &
\phi_i(\xi^Q_k) \underline{\underline{M}}(\xi^Q_k) \phi_j(\xi^Q_k) J(\xi^Q_k) w^Q_k \\
%
\underline{\underline{G}}_{ij} =
\sum_{k=1}^{n^Q} &
\Big\{
\phi'_i(\xi^Q_k) \underline{\underline{D}}(\xi^Q_k) \phi'_j(\xi^Q_k) \frac{1}{J(\xi^Q_k)} \\
&+ \phi_i^\prime (\xi^Q_k) \underline{\underline{\mathcal{G}}}^\mathrm{D1}(\xi^Q_k) \phi_j(\xi^Q_k) \\
& +\phi_i(\xi^Q_k) \underline{\underline{D}}^\mathrm{D2}(\xi^Q_k) \phi^\prime_j(\xi^Q_k) \\
& \phi_i(\xi^Q_k) \left[\underline{\underline{\mathcal{G}}}^\mathrm{I}(\xi^Q_k)
+ \underline{\underline{\mathcal{G}}}^\mathrm{D2}(\xi^Q_k) \right] \phi_j(\xi^Q_k) J(\xi^Q_k)
\Big\}w^Q_k \\
%
\underline{\underline{K}}_{ij} =
\sum_{k=1}^{n^Q}
\Big\{&
\phi'_i(\xi^Q_k) \left[
\underline{\underline{C}}(\xi^Q_k)
+ \underline{\underline{D}}^\mathrm{D1}(\xi^Q_k)
\right] \phi'_j(\xi^Q_k) \frac{1}{J(\xi^Q_k)} \\
& + \phi'_i(\xi^Q_k) \left[
\underline{\underline{K}}^\mathrm{E1}(\xi^Q_k)
+ \underline{\underline{K}}^\mathrm{D1}(\xi^Q_k)
\right] \phi_j(\xi^Q_k) \\
& \phi_i(\xi^Q_k) \left[
\underline{\underline{\mathcal{P}}}^\mathrm{E2}(\xi^Q_k) +
\underline{\underline{\mathcal{P}}}^\mathrm{D2}(\xi^Q_k) \right]
\phi'_j(\xi^Q_k) \\
& + \phi_i(\xi^Q_k) \left[
\underline{\underline{\mathcal{K}}}^\mathrm{E2}(\xi^Q_k)
+\underline{\underline{\mathcal{K}}}^\mathrm{D2}(\xi^Q_k)
\right]\phi_j(\xi^Q_k) J(\xi^Q_k)
\Big\} w^Q_k
\end{aligned}\end{split}\]
for all \(i,j \in\{1,2, \ldots, P\}\) and
\(\underline{\underline{M}}_{ij},\underline{\underline{G}}_{ij},\underline{\underline{K}}_{ij} \in \mathbb{R}^{6 \times 6}\).
These matrices define the full matrices for a single beam LSFE. For
example, the mass matrix is assembled as
\[\begin{split}\underline{\underline{M}} =
\begin{bmatrix}
\underline{\underline{M}}_{11}&
\underline{\underline{M}}_{12}& \ldots &
\underline{\underline{M}}_{1P}\\
\underline{\underline{M}}_{21} &
\underline{\underline{M}}_{22}&
\ldots &
\underline{\underline{M}}_{2P}\\
\vdots & \vdots & \vdots & \vdots \\
\underline{\underline{M}}_{P1}&
\underline{\underline{M}}_{P2}& \ldots &
\underline{\underline{M}}_{PP}\\
\end{bmatrix}\end{split}\]
where
\(\underline{\underline{M}} \in \mathbb{R}^{6 P \times 6 P}\);
similarly for
\(\underline{\underline{G}}, \underline{\underline{K}} \in \mathbb{R}^{6 P \times 6 P}\).
Deville, M. O., P. F. Fischer, and E. H. Mund. 2002. High-Order
Methods for Incompressible Fluid Flow. Cambridge University
Press.